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ABSTRACT

Fully relativistic and causal equations for the flow of charge in curved spacetime are derived. It is believed
that this is the first set of equations to be published that correctly describes the flow of charge, as well as the
evolution of the electromagnetic field, in highly dynamical relativistic environments on timescales much
shorter than the collapse time (GM=c3). The equations will therefore be important for correctly investigating
problems such as the dynamical collapse of magnetized stellar cores to black holes and the production of jets.
Both are potentially important problems in the study of gamma-ray burst engine models and in predicting the
dynamical morphology of the collapse and the character of the gravitational waves generated. This system of
equations, given the name of ‘‘charge dynamics,’’ is analogous to those of hydrodynamics (which describe the
flow of mass in spacetime rather than the flow of charge). The most important equation in the system is the
relativistic generalized Ohm’s law, which is used to compute time-dependent four-current. Unlike other
equations for the current now in use, this one ensures that charge drift velocities remain less than the speed of
light, takes into account the finite current rise time, is expressed in a covariant form, and is suitable for
general relativistic computations in an arbitrary metric. It includes the standard known effects (Lorentz force,
Hall effect, pressure effect, and resistivity) and reduces to known forms of Ohm’s law in the appropriate
limits. In addition, the plasma particles are allowed to have highly relativistic drift velocities, resulting in an
implicit equation for the ‘‘current beaming factor’’ �q . It is proposed that, short of solving the multifluid
plasma equations or the relativistic Boltzmann equation itself, these are the most general expressions for
relativistic current flow in the one-fluid approximation, and they should be made part of the general set of
equations that are solved in extreme black hole accretion and fully general numerical relativistic collapse
simulations.

Subject headings: black hole physics — gamma rays: bursts — MHD — relativity

1. INTRODUCTION

This paper is another in a series whose goal is to establish the
mathematical, physical, and numerical tools necessary to un-
derstand and simulate the formation of black holes and the
production (through electrodynamic processes) of relativistic
jets during that collapse. The full understanding of how black
holes are formed, and how jets and gravitational waves might
be generated in accretion and gravitational collapse, is currently
one of the most challenging, and far-reaching, astrophysical
problems. It has important observational consequences for
gravitational wave sources, gamma-ray bursts (GRBs), qua-
sars, and microquasars. Its solution will involve nearly every
branch of theoretical astrophysics (nuclear and particle physics,
electromagnetics, gravity [numerical relativity], plasma flow,
radiation transport, and dynamics). In addition, the formulation
of the problem will require that these processes be expressed in
a general relativistic framework that respects the principles of
causality and covariance on timescales considerably shorter
than the light crossing time of the forming black hole
(TGM=c3). While there is a good understanding of how charge
behaves near black holes in equilibrium situations, i.e., on times
3GM=c3 (Wald 1974; Lee, Lee, & van Putten 2001), to date
there appears to be no thorough treatment of charge flow and
field evolution in strong gravity on very short timescales. Such
a treatment should take into account the fact that the current rise
time can be long compared to the characteristic timescale,
properly account for particle velocities (bulk, drift, and ther-
mal) that can approach c, be expressible in an arbitrary space-

time metric, and also reproduce, in the appropriate limits, the
standard known effects (including the Hall and pressure effects,
not just electric acceleration, Faraday induction, and ohmic
resistivity).
The purpose of this paper is to return to the basic equations

of general relativistic statistical mechanics and properly de-
rive the covariant equations for the evolution of the current.
Section 2 discusses the framework of the problem and the
present lack of a good equation for the current in highly rela-
tivistic situations. Section 3 sets up the relativistic Boltzmann
problem, and x 4 derives the relativistic plasma equations.
Section 5 discusses relativistic one-fluid plasma theory and
derives the generalized Ohm’s law and charge dynamics.
Section 6 shows that the theory reduces to various previous
generalized Ohm’s laws in the appropriate limits and dis-
cusses the applicability of the one-fluid theory. The most
important results of this paper are the basic equations of
charge dynamics (56)–(58) and (63) or, in component form,
equations (68)–(71).

2. CAUSAL AND COVARIANCE PROBLEMS IN
PRESENT TREATMENTS OF THE CURRENT

The two governing sets of equations for the general nu-
merical relativity problem of electromagnetic black hole for-
mation are the Einstein equations

G ¼ 8�G

c4
T ð1Þ
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for the gravitational field and the Maxwell equations

: = F ¼ 4�

c
J; ð2Þ

: = M ¼ 0 ð3Þ

(Faraday’s and Ampere’s laws) for the electromagnetic field,
where : ¼ e� ¼ @=@x� is the four-gradient operator; G is the
second-rank, symmetric Einstein tensor that describes the sec-
ond derivatives (curvature) of the metric g; and F is the second-
rank, antisymmetric Faraday tensor that describes the electro-
magnetic field. Here T is the energy-momentum-stress tensor
that serves as the source for gravity and J is the four-current
vector that serves as the source of the electromagnetic field. The
Maxwell tensorM ¼�F (the dual of the Faraday tensor), has the
same information as the Faraday tensor and also is antisym-
metric, but has the roles of electric and magnetic field reversed.
Because of their geometric properties, these tensors satisfy the
following Bianchi identities

: = G ¼ 0; ð4Þ

: = (: = F) ¼ 0; ð5Þ

: = (: = M) ¼ 0; ð6Þ

which, from equations (1)–(3), give rise to the conservation
laws of energy and momentum,

: = T ¼ 0; ð7Þ
and of charge,

: = J ¼ 0: ð8Þ

The solution of equation (7) gives the distribution of tem-
perature T and four-velocity U(x), which is constrained to
always have the absolute value of the speed of light,

U = U ¼ �c2:

The addition of particle/rest-mass conservation,

: = �mU ¼ 0; ð9Þ

where �m is the rest mass density in the fluid frame, allows a
solution for �m(x) to be found as well. Together, T (x) and
�m(x) can be used to compute the state variables (pressure,
internal energy, etc.) that close the energy and momentum
conservation laws.

The solution to equation (8), however, which can be written
as

: = (�qUþ j) ¼ 0;

gives only one quantity, the charge density �q in the fluid
frame, in terms of the spatial charge current

j ¼ P = J; ð10Þ

where

P � 1

c2
U� Uþ g ð11Þ

is the spatial projection tensor orthogonal to the four-velocity
unit vector eU � U=c. The symbol � signifies the outer tensor
product. While j is a four-vector, it is constrained to have only
three independent components by its orthogonality to U,

U = j ¼ 0: ð12Þ

However, none of the above equations can be used to specify
these three components of the current.

Previous treatments of black hole electrodynamics have
made a variety of assumptions to determine j and thereby close
the electromagnetic equations. One popular technique is to
assume that the electromagnetic field dominates the dynamics
and is time-independent, leading to the ‘‘force-free’’ condition

J = F ¼ 0: ð13Þ

This assumption has been criticized (Punsly 2003) as leading
to effects that violate causality. That is, the force-free condi-
tion is acausal, and therefore not relativistically acceptable for
forming black holes and GRBs.

Another approach has been to assume general relativistic
magnetohydrodynamics, as outlined by many in the past
(Lichnerowicz 1967; Eckart 1940; Anandan 1984; Blackman
& Field 1993). This approach relates the current to the elec-
tromagnetic field through a simple form of Ohm’s law,

� j ¼ U

c
= F: ð14Þ

where � (x) is the resistivity distribution of the plasma. In the
nonrelativistic limit, this takes on the familiar form

J ¼ � Eþ V

c
< B

� �
;

where � ¼ 1=� is the plasma conductivity and J, E, V, and B
are the current, electric field, velocity, and magnetic field
three-vectors.

Ideal relativistic MHD is a further simplification current
flow that is useful for highly conducting plasmas, such as
those in most astrophysical situations. With � ! 0, Ohm’s law
reduces to

U = F ¼ 0; ð15Þ

which, in the nonrelativistic limit, becomes

E ¼ � V

c
< B:

The ideal MHD condition is not so much an equation for the
current as a condition on components of the Faraday tensor (the
electric field): when the conductivity is high, the local electric
field in the plasma shorts out, leaving only the EMF due to
charged plasma motion in the magnetic field. The current itself
is determined by first determining the electromagnetic field
from equation (3) and then inverting equation (2) for J.
Equations (13) and (15) appear very similar. They both state
that the Faraday tensor is orthogonal to a four-velocity, either
the particle drift velocity or the average particle velocity.
However, they generate very different physics.

Unfortunately, a criticism that is equally harsh as that of the
force-free condition can be leveled against the MHD condi-
tion, even the resistive version of it (eq. [14]). The latter states
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that the application of an electromagnetic field instantaneously
generates a current. However, this also is acausal. There is no
immediacy in relativistic dynamics. A current builds up after a
finite, albeit short, rise time. And in relativistic flow, the time-
dependent increase in a current might be interrupted by any
number of other rapid phenomena, resulting in possible charge
separation and time-dependent charge dynamics.

A nonrelativistic version of the ‘‘generalized Ohm’s law’’ is
often used in laboratory plasma physics and is given by the
expression (Rossi & Olbert 1970; Krall & Trivelpiece 1973)

@J

@t
þ9 = (VJ þ JV � �qVV)þ9pq

¼ ‘ Eþ V

c
< Bþ h

J

c
< B� �J

� �
; ð16Þ

where 9 is the three-space gradient operator and the charge-
weighted pressure (per unit mass) is

pq ¼
X
a

qapa=ma

qa is that particle’s charge, ma is its mass, and pa is that
species’ partial pressure. The Lorentz, Hall, and resistivity
coefficients are

‘ ¼
X
a

naq
2
a=ma;

h ¼ 1

‘

X
a

qa=ma;

� ¼ �=‘;

where na is the number density of particle species a. The
resistivity term results from integrating particle collisions over
velocity and approximating the result as an effective collision
frequency �,

X
a

naqa

Z
Vv

vḟa;coll d
3v � ��J:

Equation (16) has most of the effects we are looking for in
a description of charge dynamics (finite current rise time,
Lorentz force, Hall effect, pressure effect, and resistivity).
However, it is valid only to linear order in V/c (still acausal),
only in the laboratory coordinate system (not covariant), and
only in flat space.

Ardavan (1976) derived a relativistic form of Ohm’s law for
a cold plasma (vanishing pa and pq) in flat space. This ex-
pression turns out to have some errors, but is still useful for
checking our results in x 5. (Expressions for a relativistic cold
pair plasma also have been derived [Gedalin 1996; Melatos &
Melrose 1996], but the Ardavan expression is a little more
general and therefore more useful to us.) In our notation the
corrected Ardavan equation for the current is

@

c@t
½U0 3Jþ (J0 � �qU

0)3U�

þ9 = ½3J 3Uþ 3U 3J� �q
3U 3U�

¼ ‘

�
1

c
U0Eþ 3U < B
� �

þ h
1

c
(J0 � �qU

0)Eþ 3J < B
� �

� �3J

�
; ð17Þ

where U0 and J0 are the temporal components of the four-
velocity and four-current, respectively; 3U and 3J are the
spatial three-vector components of those four-vectors (i.e.,
3U ¼ �V ¼ U0V=c). The errors that have been corrected, all
on the right-hand side, are a sign error in the Lorentz term
and the addition of �h�qU

0E=c in the Hall term. In the
limit of nonrelativistic flow, U0 ! c, J0 ! �qc,

3U ! V, and
3J ! J. So, with these corrections, equation (17) reduces to
equation (16) when the charge-weighted pressure pq ¼ 0.
Equation (17) is both causal and covariant, but it is valid only
for Lorentz systems in flat space and only when the plasma is
truly cold. It does not include effects that occur when the
plasma has a relativistic temperature or a relativistic current
drift velocity.
The goal of this paper is to derive a description of charge

flow that is valid in all relativistic situations—relativistic bulk
flow, hot plasma, relativistic current drift velocities—and that
is causal, covariant, and valid in any spacetime metric.

3. GENERAL RELATIVISTIC STATISTICAL MECHANICS

3.1. Phase Space and Particle Density

Phase space � ¼ �x � �u is inherently eight-dimensional,
not six. The generalized coordinates are the position and four-
velocity (x�; u�), where �; � ¼ 0, 1, 2, 3. The �x is a general
curved spacetime with a global time coordinate x0 ¼ ct and
three spatial coordinates. The volume element

d�x ¼
ffiffiffiffiffiffi�g

p
dx0 dx1 dx2 dx3

(where
ffiffiffiffiffiffi�g

p
is the determinant of the spacetime metric) is an

invariant over the entire spacetime. Therefore, in a general
metric, d�x cannot be separated into globally invariant tem-
poral and spatial parts. However, in each local Lorentz frame
at a given point in spacetime, it can be separated as

d�̂x ¼ d� d�x;

where

d� � dx0̂=(u0̂=c);

d�x � (u0̂=c)dx1̂dx2̂dx3̂:

Each of the factors in equation (18) are Lorentz invariant
(Misner, Thorne, & Wheeler 1973). We therefore can define a
Lorentz invariant three-space density of particles of species a
and four-velocity u in each local Lorentz frame

@a �
dNa

d�xd�̂u

ð18Þ

in the seven-dimensional phase space �x � �̂u.
While �̂u is a four-dimensional velocity space, all particles

are constrained to move on a three-dimensional hypersurface
within that space (the ‘‘mass hyperboloid’’) �u, defined by the
normalization of particle velocity

u = u ¼ �c2: ð19Þ

In regions of �̂u outside of �u the particle density vanishes, as
there are no particles with u = u 6¼ �c2. Some treatments of
relativistic statistical mechanics incorporate the constraint (19)
into the Boltzmann equation directly. Indeed, one can separate
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d�̂u into temporal and spatial parts, in a manner similar to
d�̂x,

d�̂u ¼ d	 d�u; ð20Þ

where

d	 � (u0̂=c)du ¼ d(u0̂) 2=2c; ð21Þ

d�u � du1̂du2̂du3̂=(u0̂=c): ð22Þ

Not only are d	 and d�u Lorentz invariant, the product

d�xd�u ¼ dx1̂dx2̂dx3̂du1̂du2̂du3̂

is also Lorentz invariant (Misner et al. 1973). One therefore
could define an invariant density in six-dimensional phase
space instead of @a. However, in this paper it has been found
to be more useful to use the seven-dimensional phase space
and perform the velocity integrals over �̂u. The mass hyper-
boloid then is enforced only at the end of the computation
when the integrals are evaluated. This is accomplished by
using a delta function to describe the lack of particles outside
of the mass shell in the distribution @a. (See Appendix.)

A final property of the particle density to note is that, as
juij ! 1 (where i ¼ 1, 2, 3), @a approaches 0 faster than any
power of ui. Therefore, @a, multiplied by any power of ui,
vanishes on the hypersurface @�̂u (the boundary of �̂u).

3.2. The Relativistic Boltzmann Equation

The density @a for each particle species obeys the relativ-
istic Boltzmann equation

d@a

d�
¼ @̇a; col; ð23Þ

where � again is the proper time for particles in that region of
phase space, and @̇a; col is the number density of collisions per
unit time of that particle species at that point in phase space
(summed over all other particles of all other species)

@̇a; col ¼ �
X
b

Z
� 0
(a� a0) = :u@0

ab(x; u; x
0; u0)d�0; ð24Þ

where a is the particle acceleration caused by body forces (i.e.,
forces other than particle collisions). Equation (23) can be
rewritten in generalized coordinates as

ṡ r
@@a

@sr
¼ @̇a; col;

where sr � (x�; u�) with r ¼ 0, 1, . . . , 6, 7, or, in geometric
form,

u = :x@a þ a = :u@a ¼ @̇a; col; ð25Þ

and the gradient operators are

:x � ex �
@

@ x
;

:u � eu �
@

@u
:

For the electromagnetic field, a is the Lorentz acceleration

a ¼ qa

mac
u = F:

Some treatments of general relativistic statistical mechanics
(Andréasson 2002)1 also include the gravitational ‘‘force’’ by
including Christoffel symbols in the acceleration. However,
this is not necessary, nor really desirable, as we can implicitly
take these effects into account by using only the geometrical
form of the gradient operator throughout the derivation and
then using the equivalence principal at the end to convert the
equations to component form. As a body force, gravity is au-
tomatically included in the structure of any spacetime in
which :x is evaluated.

4. THE MULTIFLUID EQUATIONS

The equations of plasma dynamics are generated by taking
velocity moments of the relativistic Boltzmann equation, which
gives rise to many hydrodynamic and thermodynamic quan-
tities. Taking the moment involves multiplying equation (25)
by a power of the velocity coordinate vector u and integrating
over all velocity space �̂u .

4.1. The Zeroth Moment: Conservation of Particles

Multiplying equation (25) by unity and integrating over �̂u

produces the zeroth moment. One can show that the integral of
the second term in that equation vanishes by first integrating
by parts, Z

�̂u

a = :u@a d�̂u ¼
Z
�̂u

:u = (a@a) d�̂u

�
Z
�̂u

(:u = a)@a d�̂u: ð26Þ

Gauss’ law then can be used to show that the first term in equa-
tion (26) vanishes because @a vanishes on the boundary @�̂u ,Z

�̂u

:u = (a@a)d�̂u ¼
I
@�̂u

@aa = d2u ¼ 0;

where d2u is the three-volume element on @�̂u. The kernel
:u = a in the second term in equation (26) also vanishes be-
cause the Faraday tensor is antisymmetric and independent of
the velocity coordinate,2

:u =
qau = F

mac

� �
¼ 0:

Similarly, the velocity integral of the right-hand side of
equation (25) vanishes because @̇a; col is in a similar form to the
a = :u@a term in equation (25) (see eq. [24]). Because x and u
are independent generalized coordinates, :x = u ¼ 0, so the
velocity integral of the zeroth moment of equation (25)
becomes simply

:x =

Z
�̂u

u@a d�̂u ¼ 0: ð27Þ

1 Andréasson (2002) available at http://www.livingreviews.org/lrr-2002-7.
2 In component notation, (@=@u�)(u�F�

� ) ¼ 
��F
�
� ¼ F�

� ¼ 0.
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In order to interpret this equation, we need a coordinate gauge
in which to express u.

4.2. Velocity Decomposition and the Velocity
Coordinate Gauge

We choose to decompose the velocity coordinate u into two
components, one along the center–of–rest-mass average par-
ticle velocity U,

U �
P

a ma

R
�̂u

u@a d�̂uP
a ma

R
�̂u

@a d�̂u

ð28Þ

(the justification for this choice of average velocity will be
given later), and one orthogonal to U (the drift four-velocity
v), yielding

u ¼ � (Uþ v); ð29Þ

where the particle Lorentz factor is

� � � 1

c2
(U = u) ð30Þ

and the relative spatial velocity coordinate is

v � (P = u)=�: ð31Þ

Note that v is still a four-vector, but it is constrained to
have only three independent components by its orthogonality
with U,

U = v ¼ 0: ð32Þ

It therefore is a velocity coordinate that spans �u . In the rest
frame of the fluid, the velocity components are

u ¼ �c; �v1; �v2; �v3
� 	

; ð33Þ
v ¼ 0; v1; v2; v3

� 	
; ð34Þ

and the constraint (eq. [19]) on the particle velocity u becomes

� ¼ 1� v = v=c2
� 	�1=2

;

as expected.
With the velocity decomposition in equation (29), the

equation of continuity (27) for particle species a becomes

:x = na(Uþ Va) ¼ 0; ð35Þ

where

na �
Z
�̂u

�@a d�̂u ð36Þ

is the particle density and

Va ¼
1

na

Z
�̂u

�v@a d�̂u ð37Þ

is the average particle drift velocity for species a. The equa-
tion of continuity (35) is important for the conservation laws

of rest mass and charge in one-fluid dynamics. Despite the
Lorentz factor in the above velocity integrals, these quantities
are, in fact, the familiar three-momentum integrals of standard
thermodynamics, in which the single factor of � does not
appear (see Appendix).

4.3. The First Moment: Conservation of Particle
Energy-Momentum

The first moment of equation (25) generates a vector
equation

:x = (@au� u)þ u
qau = F

mac
= :u@a

� �
¼ u@̇a; col; ð38Þ

which also can be integrated over d�̂u to yield

:x = n0aU� Uþ naU� V0
a þ naV

0
a � Uþ �a

� �
¼ 1

mac
Ja = F� �na(Uþ Va); ð39Þ

where

n0a �
Z
�̂u

�2@a d�̂u; ð40Þ

V0
a �

1

na

Z
�̂u

�2v@a d�̂u: ð41Þ

In deriving equation (39) we have substituted equation (29)
for u in the first term of equation (38) and discarded a van-
ishing boundary integral that results from integrating the
second term by parts.
Note the extra factor of � in the integrals in equations (40)

and (41) compared with (36) and (37). These are beamed
quantities that give rise to relativistic internal energy, pressure,
etc. The partial current is

Ja � qa

Z
�̂u

u@a d� ¼ qana(Uþ Va); ð42Þ

which has components qana(c; V1
a; V2

a; V3
a) in the fluid rest

frame. A four-vector

ja ¼ qanaVa ð43Þ

can be used to describe the U-orthogonal part of the current
(cf. eq. [10]), with U = ja ¼ 0. The partial pressure tensor (per
unit mass) of species a is

�a �
Z
�̂u

(P = v)� (P = v)@a d�̂u

¼
Z
�̂u

�2(v� v)@a d�̂u: ð44Þ

Note also in equation (39) that the collision term has been
simplified to a collision frequency � times the integrated par-
ticle flux.

5. THE ONE-FLUID EQUATIONS

At present, astrophysical simulation codes deal almost ex-
clusively with the one-fluid equations when dynamics are
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concerned. That is, the individual particle species dynamical
equations are summed and solved as a single set of equations.
Of course, many stellar evolution and collapse codes track the
composition for different species of particle, but this is usually
done for equation of state and composition purposes only, not
to determine relative drift velocities of different charged spe-
cies, for example. Therefore, for at least the near future, it will
still be important to construct one-fluid equations for studies
of processes like black hole formation and accretion.

5.1. The Example of Hydrodynamics

Before deriving the equations of relativistic charge dy-
namics, it is important to review the derivation of the equa-
tions of hydrodynamics in the presence of an electromagnetic
field. This is more than just an exercise in ‘‘reinventing the
wheel.’’ Reviewing this derivation will allow us to check that
our equations and procedures are correct and define some
quantities that will be needed later in the discussion of charge
dynamics, and it will assist us in understanding the new set of
equations in terms of the familiar hydrodynamic ones. The
procedure is to simply weight the five equations (35)–(39) by
the particle rest mass ma and sum over all species,

:x = �mU ¼ 0; ð45Þ

:x =

�
�m þ "

c2

h i
U� U

þ 1

c2
U�HþH� U½ � þ pP

�
¼ 1

c
J = F; ð46Þ

where

�m �
X
a

nama ð47Þ

is the total rest mass density,

" �
X
a

"a �
X
a

(n0a � na)mac
2

¼
X
a

mac
2

Z
�̂u

�(� � 1)@a d�̂u ð48Þ

is the internal (kinetic) energy density,

H �
X
a

namac
2V0

a ð49Þ

is the heat flux (including relativistic enhancement), and

p �
X
a

pa �
X
a

ma

3

Z
�̂u

�2(v = v)@a d�̂u ð50Þ

is the scalar pressure for an isotropic distribution in �u.
Equation (45) is correct only if the rest-mass–centered drift
velocity is zero, X

a

namaVa ¼ 0;

and that is the case only if the average velocity is defined
according to equation (28), thereby justifying our rest-mass–
centered choice for U.

We can show that equation (46) is equivalent to equation (7)
if we define the following energy-momentum-stress tensor:3

T � TFL þ T;EM ð51Þ

TFL � �m þ "þ p

c2


 �
U� U ð52Þ

þ 1

c2
U�HþH� U½ � þ pg;

TEM � 1

4�
F = F� 1

4
(F:F)g

� 

; ð53Þ

and recognize from equation (2) that

1

c
J = F ¼ �:x = T

EM : ð54Þ

The multifluid equations of x 4 therefore reproduce the fa-
miliar equations of general relativistic hydrodynamics.

Note that the energy-momentum-stress tensor in equation
(52) is the one for an ideal gas with heat flow. It does not
contain terms for viscous momentum and energy transport,
however. These latter terms would arise if we performed a
more sophisticated treatment of the collision term. In addition,
unlike nonrelativistic treatments (which require the second
moment for the energy equation), the treatment here derives
the conservation of energy using only the first moment. This
occurs because the equations are relativistic and use the four-
vector u in the first moment instead of the spatial velocity v. The
conservation of energy equation can be extracted by taking
the component of equation (46) along the average velocity4

U = :x"þ ("þ p):x = U ¼� j = F = U�:x = H

�H = (U = :xU)=c
2; ð55Þ

which is also known as the ‘‘first law of thermodynamics’’: the
change in internal energy " plus mechanical work is given by
ohmic heating minus losses due to heat conduction.

5.2. Charge Dynamics in Geometric Form

A set of equations similar to (45) and (46) can be generated
by weighting equations (35) and (39) with the particle charge
qa rather than the rest mass. The results are the equations of
charge dynamics: the conservation of charge

:x = J ¼ :x = (�qUþ j) ¼ 0 ð56Þ

(equivalent to eq. [8]) and the relativistic generalized Ohm’s
law

:x = C ¼ ‘
1

c
Uþ h jð Þ = F� � (�qUþ j)

� 

; ð57Þ

where the charge-current-pressure tensor is given by

C � �q þ
"q þ pq

c2

� �
U� Uþ U� j0 þ j0 � Uþ pqg : ð58Þ

3 In component notation, the inner and scalar products of two tensors are
½F =G��� ¼ F��G�

� and F :G ¼ F��G�� .
4 The Euler equations also can be extracted by projecting eq. (46) with the

projection tensor P, but they are of no interest in this paper.
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Note the appearance of a beamed current j0 in the charge-
current-pressure tensor while the source terms involve the
unbeamed current j only.

The individual charge-dynamical scalars are charge density,
charge-weighted internal energy and pressure (per unit mass),

�q �
X
a

naqa; ð59Þ

"q �
X
a

qa

ma

"a ¼
X
a

(n0a � na)qac
2 ð60Þ

¼
X
a

qac
2

Z
�̂u

�(� � 1)@a d�̂u;

pq �
X
a

qa

ma

pa ¼
1

3

X
a

qa

Z
�̂u

�2(v = v)@a d�̂u; ð61Þ

and an enhancement �q in the spatial electric current due to
relativistic beaming effects,

j0 �
X
a

qa

Z
�̂u

�2v@a d�̂u �
X
a

qanaV
0
a

� �q
X
a

qanaVa ¼ �q j: ð62Þ

Because the partial internal energies "a and pressures pa have
been defined previously (eqs. [48] and [50]), and because qa
and ma are known, the quantities "q and pq (eqs. [60] and [61])
are not new variables but rather different weightings of known
equations of state. Only the six quantities �q, j

0, and �q are
new ones that need their own charge-dynamical equations.
Five of those equations are, respectively, equation (56), the
three components of equation (57) orthogonal to U, and the
component of equation (57) parallel to U. Because j0 is a four-
vector, the sixth equation is a constraint on its components,

U = j0 ¼ 0; ð63Þ

similar to equation (12).
The sources and sinks of current on the right-hand side of

equation (57) are the Lorentz effect, the Hall effect, and re-
sistive losses, with coefficients

‘ �
X
a

(q2ana=ma); ð64Þ

h � 1

‘jjj
X
a

qa

ma

jjaj; ð65Þ

� � �

‘
; ð66Þ

where jjj � (� j = j)1=2 is the magnitude of the spatial current.
Note that the definition of �q (eq. [62]) makes use of the fact

that V0
a and Va are essentially parallel, resulting in the current

j being enhanced by an average Lorentz factor �q (which is
�1). We can derive an equation for �q in a manner similar to
that used for equation (55), arriving at

j0 = :x(�q) ¼ �2q

�
‘��q �

1

c2

�
j0 = (U = :xU)

þ U = :x"q þ ("q þ pq):x = U
��

� �q(�q � 1):x = j
0 � �qh‘

c3
j0 = F = U: ð67Þ

While analogous to equation (55), equation (67) is of a very
different character. Everything in it, including j0, �q, U, F, and
even "q and pq can be considered known. What remains is a
current-weighted gradient of the Lorentz factor equaling a
quadratic function of that Lorentz factor. In the rest frame of
the fluid (or when the fluid is at rest), the gradient j0 = :x loses
all time dependence, and the equation takes on an elliptical
character. The distribution of �q must be solved implicitly on
each hypersurface, employing appropriate boundary con-
ditions, etc. Equation (67) can be thought of as a constraint on
the current beaming factor �q, enforcing the conservation of
charge-weighted internal energy flow via j0 at the same time as
conservation of charge flow via j is enforced by equation (56).
Implicit equations for Lorentz factors are not unusual in

relativistic hydrodynamics or magnetohydrodynamics (Duncan
& Hughes 1994; Martı́ & Müller 1999;5 Hughes, Miller, &
Duncan 2002; Koide 2003). In most cases, however, they are
simple algebraic equations that need to be solved in a single
cell in spacetime at each time step. In this case, the equation
contains gradient information on �q, and therefore must be
solved over the entire hypersurface simultaneously. When the
fluid is not at rest with respect to the frame in which the
gradient :x is computed, and is flowing relativistically, j0 can
have a significant temporal component, rendering equation (67)
a hyperbolic equation. Nevertheless, computationally, it would
be wise to solve this particular equation implicitly at all time
steps in order to avoid numerical problems when the local fluid
velocity slows down.

5.3. Charge Dynamics in Component Form

The equations of charge dynamics (56)–(58) are valid in
any frame. Therefore, we can immediately convert them to
component form in any metric. Using �q, j

0, and �q as the
variables, they are

(�qU
� þ j0�=�q)

ffiffiffiffiffiffi�g
p� �

;�
¼ 0; ð68Þ

(C�� ffiffiffiffiffiffi�g
p

);� þ ��
��C

�� ffiffiffiffiffiffi�g
p

¼ ‘

"
1

c
U� þ hj0�

�q

� �
F�� � � �qU

� þ j0�

�q

� �# ffiffiffiffiffiffi�g
p

; ð69Þ

j0�U�g�� ¼ 0; ð70Þ

with the charge-current-pressure tensor given by

C�� ¼ �q þ ("q þ pq)=c
2

� �
U�U�

þ U� j0� þ j0�U� þ pqg
��; ð71Þ

and the usual Einstein summation convention and comma
derivative applying,

j0��q;� �
X3
�¼0

j0�
@�q
@x�

:

In addition, we can replace the zeroth (temporal) compo-
nent of equation (69) with that projected along the four-velocity

5 Martı́ & Müller (1999) available at http://www.livingreviews.org/lrr-
1999-3.
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to get a component form of equation (67) for the current
beaming factor,

j0��q;� ¼ �2q

(
‘��q �

1

c2

�
j0�g��U

k(U�
;k þ ��

�kU
�)

þ U�"q;� þ
("q þ pq)ffiffiffiffiffiffi�g
p (U� ffiffiffiffiffiffi�g

p
);�




� �q(�q � 1)ffiffiffiffiffiffi�g
p ( j0�

ffiffiffiffiffiffi�g
p

);� �
�qh‘

c3
j0�F��U

�

)
: ð72Þ

6. DISCUSSION

6.1. Special Cases

It is useful to examine a few special cases of relativistic
charge dynamics to compare with previous authors’ work.

6.1.1. Steady State with No Hall Term

Under many conditions the terms on the left-hand side of
equation (57) are small compared to those on the right hand
side, because the time and length scales over which plasma
properties vary are long. In addition, the Hall effect is often
small compared to the Lorentz and resistive effects. The
remaining terms, when projected orthogonal to U, then reduce
to equation (14). They can be reduced further to the time-
independent relativistic and nonrelativistic forms in x 2 under
conditions of infinite conductivity, subrelativistic flow, etc.

6.1.2. Cold Plasma and Nonrelativistic Flow

Equation (57) also can be reduced to the form of equation
(17) if we make the following cold plasma assumptions: (1) the
charge-weighted internal energy and pressure are negligible
compared with �qc

2, and (2) the current beaming factor �q ¼ 1
so that j0 ¼ j. These conditions allow the charge-current-
pressure tensor to be rewritten as

C � U� Jþ J� U� �qU� Uþ pqg

and allow us to ignore the temporal component of equation (57),
which is now redundant with the conservation of charge
equation. With the assumption that the metric is that of
Minkowskian flat space (with nonzero components g�� ¼
½�1; 1; 1; 1�, no sum on � ), the three spatial components of
equation (57) (those projected orthogonal to et, not eU) reduce
to equation (17).

If we additionally make the following nonrelativistic as-
sumptions that U ¼ ½c; Vx; Vy; Vz� and Vj jTc, so that the
orthogonal current j is approximately the spatial current J ¼
½0; Jx; Jy; Jz�, then equation (57) reduces to equation (16).

6.1.3. Relativistic Pair Plasma

For highly relativistic flows a time-dependent form of
equation (57) will be needed. However, for certain plasmas,
such as a relativistic pair plasma near a black hole, equation (67)
can still be simplified somewhat. In this case, m� ¼ mþ and
q� ¼ �qþ, so "q ¼ pq ¼ 0, and the Hall coefficient vanishes
explicitly. Then equation (67) reduces to

j0 = :x(�q) ¼ �2q ½‘��q � j0 = (U = :xU)=c
2�

� �q(�q � 1):x = j
0: ð73Þ

In other words, the beaming factor distribution is determined
by the competition between local ‘‘creation’’ of charge by
collisions and the loss of charge through the beamed current j0.

6.1.4. Uniform Adiabatic Index and Mixture

More generally, if the plasma is made up of particle partial
fluids that have the same adiabatic index, and if that index and
the fractional pressure �a � pa=p of each species are uniform
throughout �x, then we have each quantity "a, ", and "q related
to their respective pressures by the simple relation

"i ¼
1

�� 1
pi; ð74Þ

where i ¼ a, q, or blank, and � is the adiabatic index. Then the
ratio of charge-weighted to total pressure (and that for internal
energy) is a uniform constant throughout �x,

pq

p
¼ "q

"
¼

X
a

qa

ma

�a � 
: ð75Þ

We then can use equation (55) to eliminate the charge-
weighted thermodynamic quantities in equation (67) to obtain
a simpler equation for �q,

j0 = :x(�q) ¼ �2q

�
‘��q � j0 � 
H

c2

� �
=
U = :xU

c2

�:x = j0 � 
H

c2

� �


þ �q :x = j
0 � (h‘� 
)

c3
j0 = F = U

� 

: ð76Þ

The pair plasma is a special case of these conditions, and
equation (76) reduces to equation (73) in this case (
, h ! 0).
Equation (76) is useful for showing how the equation for �q is
decoupled from the terms involving "q in equation (67). The
quantity j0 � 
H=c2 is a residual (beamed) current whose
properties can affect the value of the current beaming factor
�q.

6.2. One-Fluid versus Multifluid Theory

The advantage of one-fluid theory, of course, is that, by
summing the multifluid equations and deriving thermody-
namic quantities that close the system, the many equations
for each particle species are reduced to only five (eqs. [45]
and [46]). However, with the introduction of a set of five
new one-fluid equations (eqs. [56] and [57]), one must ask
whether it is still useful to deal with the one-fluid equations
rather than the more instructive multifluid equations, particu-
larly if there are only two fluids (ions and electrons).

The answer still appears to be a qualified ‘‘yes,’’ although it
is quite likely that the multifluid equations will become more
important in the next few decades, if not sooner. First of all,
most current astrophysical codes (mainly hydrodynamic and
magnetohydrodynamic) are one-fluid codes. While neverthe-
less a significant task, the addition of the one-fluid charge
dynamical equations to existing MHD codes is still much less
effort than developing an entirely new multifluid code. Second,
even when constructing a new code that involves only ions and
electrons, developing that two-fluid code will be a much greater
task than developing a one-fluid code with the 10 equations of
hydro- and charge dynamics. In one-fluid theory, the collision
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terms can be treated with much less rigor than in a two-fluid
code. In the former, because thermodynamic equilibrium is
assumed, one need only postulate an approximate resistivity,
as we have done in x 5. In the latter case, however, one must
carefully handle collisional momentum and energy transfer
between each species, as well as the scattering of particles by
electromagnetic oscillations with wavelengths shorter than a
cell size. Otherwise, the simulated multitemperature structure
of the fluid will be meaningless. Finally, as is the case in
simulations of late stages of stellar evolution and collapse,
when dealing with the collapse of dense matter to black
holes, there probably will be many more than two species of
particle (neutrons, protons, electrons, positrons, heavy iron-
peak nuclei, etc.). With five multifluid equations for each
species, the number of equations to integrate could be sig-
nificantly greater than the 10 needed for hydro- and charge
dynamics.

Therefore, any multifluid astrophysical codes that are to be
developed in the next few years are likely to be two-fluid only
and probably will initially make the assumption of thermo-
dynamic equilibrium. In that case, their results will be similar
to those obtained by older MHD codes that have been modi-
fied to handle charge dynamics. Nevertheless, these new codes
will become increasingly sophisticated as more particle
physics is added and should lead to a greater understanding of
black hole formation than is possible from one-fluid simu-
lations alone.

7. CONCLUSIONS

This paper has used geometric frame-independent tensor
notation to derive what the author believes is the first set of
one-fluid equations to be published that correctly describes the
flow of charge in general relativistic environments. Previously
used or suggested approximations (e.g., force-free field,
magnetohydrodynamics, even currently available relativistic
forms of the generalized Ohm’s law) do not correctly describe
black hole astrophysics on timescales much shorter than the
collapse time (TGM=c3) or in strong gravitational fields. The
principle equations of charge dynamics are equations (56)
and (57), with an alternative form for the relativistic current
equation (67). Proper handling of charge flow in such envi-
ronments will be important for understanding the details of
highly relativistic astrophysical events like black hole for-
mation and relativistic jet generation, which may be important
for understanding gamma-ray bursts, etc. (Multifluid equa-
tions are also derived, but the collision terms are not treated
with sufficient rigor in this paper to make them useful for
detailed simulations at this time.) These equations of ‘‘charge
dynamics,’’ also given in component form in equations (68),

(69), and (72), are valid for any flow velocity (causal), in any
reference frame (covariant), and in any spacetime metric
(general relativistic). They are therefore suitable not only for
flow in stationary metrics such as Schwarzschild or Kerr, but
also for general numerical relativity calculations that include a
fluid with an embedded electromagnetic field. The equations
of charge dynamics were shown to reduce to a variety of prior
‘‘generalized Ohm’s laws’’ in the appropriate cold-plasma,
flat-space, or nonrelativistic limits.
In addition to the general relativistic nature of the equations,

the principal difference between this paper and previous work
is that it does not make the assumption of a cold plasma. Not
only must one deal with quantities such as charge-weighted
internal energy and pressure, one also must solve for the
current beaming factor �q that distinguishes the beamed cur-
rent j0 from the unbeamed j. The equation for �q , generated by
the subtraction of the energy equations for positive and neg-
ative ions, is primarily implicit and global in character, pro-
viding a constraint on the flow of charge. This result is in
sharp contrast to the assertion (Khanna 1998) that a one-fluid
theory is only possible for a cold plasma. The charge-current
tensor approach produces a fourth ‘‘energy’’ equation for the
beamed current that can take into account fast current drift
velocities and hot plasma as well as fast bulk speeds.
While of course valid in more benign environments, the

charge-dynamical form of Ohm’s law probably will be
needed only in very violent environments such as electro-
magnetic, rotating black hole formation. These events can
have significant fluid and metric shear that may affect charge
flow on timescales shorter than the current rise time. How-
ever, it is precisely these environments that are believed to
obtain in ‘‘collapsars,’’ which form in the centers of massive
stars, and in mergers of neutron stars in close binary systems.
And it is, these systems that are believed to lead directly to
the formation of electromagnetic jets and their associated
observable events. Charge dynamics, therefore, may play a
significant role in understanding the engine that generates the
highly relativistic jets seen in gamma-ray bursts and other
sources.

The author is grateful for discussions with M. Miller. He is
also grateful for a JPL Institutional Research and Develop-
ment grant, and for the continued hospitality of the TAPIR
group at Caltech. The research described in this paper was
carried out at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under contract to the National Aeronautics
and Space Administration.

APPENDIX

VELOCITY INTEGRALS IN THREE-SPACE

The velocity integrals in xx 4 and 5 were cast as being over the four-dimensional volume �̂u. This causes each integral, even
those for quantities that appear in nonrelativistic dynamics (na, pa, "a), to contain a Lorentz factor (eq. [30]) in its kernel. In this
Appendix we show that each can be converted to its more familiar, three-space form by confining the integration to take place on
the mass hyperboloid only.

We begin by defining a three-dimensional density

fa �
@6Na

m3
a@�u@�x

¼ @6Na

@�p@�x

ðA1Þ
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as the distribution of particles in three-momentum p, where ma is the particle rest mass and d�p ¼ m3
ad�u. This distribution is

related to @a by a delta function that enforces the mass hyperboloid,

@a ¼ m3
a fa 
 	� �2c

2

� �
¼ m3

a fa

(u0̂ � �c)

u0̂=c
ðA2Þ

(see eq. [20]).
The four-volume integral of any kernel K, weighted by �, now can be replaced by a three-integral over fa on the mass shell, with

no � weighting:

Z
�̂u

�@aK(x; u)d�̂u ¼
Z
�u

Z
u0̂
�m3

a fa

(u0̂ � �c)

u0̂=c
K(x; u0̂; p) d�̂u

¼
Z
�p

fad
3p

Z
u0̂

�

u0̂=c

(u0̂ � �c)K(x; u0̂; p) du0̂

¼
Z
�p

K(x; �c; p) fa d
3p: ðA3Þ

Equations (36), (37), (48), and (50) now take on their familiar forms,

na ¼
Z
�p

fa d
3p; ðA4Þ

Va ¼
1

na

Z
�p

v fa d
3p; ðA5Þ

"a ¼
Z
�p

(� � 1)mac
2fa d

3p; ðA6Þ

pa ¼
1

3

Z
�p

p = v fa d
3p: ðA7Þ

[Recall that in the local Lorentz frame of the fluid v ¼ (0; v1; v2; v3).] However, V0
a in equation (41), which is used to construct the

beamed current j0, has no nonrelativistic analog (other than j itself when vj jTc), and therefore must always involve the Lorentz
factor

V0
a ¼

1

na

Z
�p

�v fa d
3p: ðA8Þ
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